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Abstract— A mathematical model for the scheduling of an- includes angiogenic treatments. Thus, combinations d¢f ant
giogenic inhibitors in combination with a kiling agent is  angiogenesis with traditional chemotherapy are currently
considered as an optimal control problem. Initial results on being pursued in clinical trials since thisifultaneously
the structure of optimal controls are derived. targets two compartments, the cancer cells and the vascular

l. INTRODUCTION cells that support the tumor” (Dr. Qian, John Hopkins
o . L Kimmel Cancer Center).

A solid in vivo tumor, after going through an initial staté  geveral mathematical models that describe the dynamics
of avascular growth, at the size of about 2mm in diametept angiogenesis have been proposed. Some of these aim at
starts the process aingiogenesis, i.e., the recruitment of {1y reflecting the complexity of the biological processesl
surrounding ho.st blood vessels in order_ to facilitate itF”OWallow for large-scale simulations (e.g., [1]), but then ks
supply of nutrients. In absence of this process (€ll., amenable to a mathematical analysis. But also several low-
vitro) a tumor ceases its growth. Remarkably, through gimensional models have been formulated. Folkman and his
complex bi-directional signaling mechanism, the tumothbot q|jaborators Hahnfeldt, Panigrahy, and Hlatky, then atHa
stimulates and alsanhibits the growth of endothelial cells \53,q Medical School, developed and biologically validated
that form the lining of the newly developing capillaries. Ing two dimensional model of ordinary differential equations
the early seventies J. Folkman [12] introduced the concepyy the interactions between the tumor volume,and the
of anti-angiogenic therap)_/: a cancer treatment that 8r9&tarrying capacity of the endothelial celtg[13]. The latter
the vasculature of a growing tumor. These treatments bring gefined as the maximum tumor volume sustainable by the
in external angiogenic inhibitors to block and in some casgascylar network. Henceforth we also refer to this as the
disrupt the growth of endothelial cells. This indirectlyeglts  onqothelial support of the tumor for short. Based on this
the tumor which, ideally, deprived of necessary nutritionyagel, two main modifications of the original model have
would regress. Contrary to traditional chemotherapy thigeen formulated since then, one by Ergun, Camphausen and
treatment targets the genetically far more stable endethel\ygin from the National Cancer Institute in the U.S. [11], the
cells rather than the contlnuously mutating tumor _Censo_ther by d’Onofrio (at the European Institute of Oncology in
As a consequence, no clonal resistance to the angiogefjfian) and Gandolfi (at National Research Council in Rome)
inhibitors develops in experimental cancer [2], providiag j, [9] and [10] who also gave a mathematical analysis of the
new hope for the treatment of tumors [14]. model by Hahnfeldt et al.

However, anti-angiogenic treatment alone only prevents | [11] the important problem of how to schedule an a pri-
the tumor from developing its blood vessel support, but dogs given amount of angiogenic inhibitors in such a way as to
not directly destroy cancer cells. It seems clear, and thigalize the maximum tumor reduction possible was proposed
was confirmed bothin vivo and in vitro, that the tumor gg an optimal control problem and initially analyzed for the
has the tendency to grow back once treatment is haltegkoplem considered there. Complete solutions to both the
Numerous Phase | and Il medical studies that have begpginal model of [13] as well as its modifications from [9]
and still are being conducted attest to this. More generallynq [11] were given in [16]-[18]. A different formulation of
due to the manifold and serious obstacles that can arigge problem was also considered in [20]. While applications
in cancer treatments, it is common not to limit treatmengs optimal control to mathematical models arising in biomed
options to one form, but to combine different approachegs| problems have had a long history with the early focus
in the hope of achieving synergistic effects and this alsgy models in cancer chemotherapy, there has been a strong

resurgence of this methodology in the analysis of newer
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needs and specifications”. a second approach currently intensively pursued in medical



research. In particular, for combination treatments whnen t equation for tumor growth accordingly as
overall interactions are very difficult to gauge a priori, a
. . , . p

theoretical analysis of models can become of practicalevalu p=—¢pln (—) — Fpv 3)

All these models for anti-angiogenic therapy mentioned q
above are for monotherapy only and few models have bed&yith v a second control, the concentration/dosage of a killing
formulated for combination therapy and none so far has be@gent and”" a tumor killing parameter. We then consider the
analyzed mathematically. In [11] a model was presented aff@llowing optimal control problem:
analyzed that combined the action of angiogenic inhibitors [OC] For a free terminal tim&’, minimize the objective

with radiotherapy. In the paper here, as suggested in [8], we J(u) = p(T) subject to the dynamics

consider the original model formulated by Hahnfeldt et al.

[13] with a linear killing term added to the dynamics for the p=—¢épln <73) — Fpu, p(0) = po, (4)
tumor growth. This is a reasonable first approximation to q

describe a cytotoxic killing agent in chemotherapy without G="bp— (M + dp%) q— Gug, ¢q(0)=gqo, (5)
considering cell-cycle specificity or it could also be cahsi .

ered a first crude approach to model radiotherapy ignoring y=1u y(0) =0, (6)
the quadratic effects. Mathematically the problem now is a z=wv, z(0)=0, (7)

multi-control problem and this leads to a significantly more

complex structure of possible optimal controls. In thisgrap 0,7] — [0,a] andv : [0,T] — [0,¢] for which

we present some initial results towards a synthesis of @btim the corresponding trajectory satisfigd") < A and
controls for these combination therapies. AT) < C -

over all piecewise continuous functions

It can be shown that for any admissible contrelsand
v and for arbitrary positive initial conditiong, and ¢, the
corresponding solutioflp, ¢) exists for all timest > 0 and
The underlying mathematical model was developed angbth p and ¢ remain positive. Thus it is not necessary to
biologically validated by Hahnfeldt, Panigrahy, Folkmaa impose this as a constraint.
Hlatky [13] and has the primary tumor volume, and The solution to problenfOC] answers the question how
the carrying capacity of the vasculatukg,as its principal to schedule a priori given amountsof angiogenic inhibitors
variables. A Gompertzian growth function with variableand C' of killing agents to achieve the maximum tumor
carrying capacity represented bys taken for tumor growth, reduction andl’ gives the time when this tumor reduction
is being achieved. From a practical point this often is the
—&pln (—)

Il. MATHEMATICAL MODEL FORANTI-ANGIOGENIC
TREATMENT WITH A KILLING TERM

(1) medically more relevant question to answer since resources
are limited and side effects need to be kept under control.
where¢ denotes a tumor growth parameter, and based on &fiom a mathematical side, once the structure of solutions
analysis of the underlying consumption-diffusion equaiip  to this problem is understood, it is normally not difficult to
[13] the following dynamics for the endothelial support wagnodify the analysis to consider a fixed therapy interial
proposed or rather than specifying the upper linGt on the cytotoxic
i=bp— (N n dp%) ¢ — Gug. @ agent include this as a penalty term in the objective.

This dynamics arises as a balance between stimulatory an
inhibitory effects. Stimulation is modelled proportiortalthe
tumor volume pp, with b a constant labelled for “birth”, and
inhibition consists of loss to the endothelial cells throug
natural causes (death etcpg, and inhibitory effects of
the tumor given bydp%q with d a constant labelled for Fe ) )
“death”. The power? arises since inhibitors need to befor P < gexp (_?>’ no matter what control is being
re|eased through the Surface Of the tumor. Generﬂ”'bs Used, the cancer Volump INnCreases. Hence, if the initial
small compared to the factors and thus often is neglecté@ndition lies in this region and if the overall amounts
(1 = 0). The variableu represents a control in the systemand C' are too small for the system to reach the region
and corresponds to the concentration of the inhibitorsevhilp > gexp (—%) then the smallest value fop along
G is a constant that represents the anti-angiogenic killingny solution is always given by the initial conditipn and
parameter. In the version of the model considered heraathematically the optimal solution simply 7= 0. Other
concentration and dosage of the inhibitors are identifiedl aless degenerate situations are possible as well. For reason
pharmacokinetic equations are not included. of space, throughout this paper we simplysumethat the

In addition to an angiogenic inhibitor we now also con-optimal solutions have the property tHAt> 0 and that all
sider a killing term (e.g., a cytotoxic agent in chemothgrapavailable inhibitors respectively cytotoxic agents arinpe
or a simplified model for radiotherapy) and thus modify theused up,y(T) = A andz(T) = C. In this case we call the

p=

I11. NECESSARYCONDITIONS FOROPTIMALITY

dI_et (u., vs) be optimal controls defined over the interval
[0,T] with corresponding trajector{p.., ¢., y«, z«). Similar

to the monotherapy problem analyzed in [17], there exist
degenerate initial conditions when the optimal solution is
given by T = 0. The reason for this lies in the fact that



initial condition well-posedfor the optimal control problem and are given by

[OC]. It is not difficult to determine which initial conditits { 0 i By(t) > 0

are well-posed (these are basic reachability questions,) b ux(t) = u if By (1) < 0
1

we shall not discuss this here.

For a well-posed initial condition the first-order necegsarand
conditions for optimality of the controls.. and v, given by () = { 0 .if Do(t) >0 . (15)
the Pontryagin Maximum Principle (for a recent textbook on : c if @5(t) <0
the subject, see, e.g., [4]) state that there exist a cAnstaq) priorj the controls are not determined by the minimum
Ao >0 and an absolutely continuous co-vectr, [0,7] —  condition at times wherd;(r) = 0. Clearly, if ®;(r) = 0,
(R*)*, (which we write as row-vector) such thato, A(t)) #  putd,(r) + 0, then the control has a switch between the end-
(0,0) for all ¢ € [0, 7], satisfying the adjoint equations with qints of the corresponding control interval at timeOn the

(14)

transversality condition, other extreme, ifb;(t) = 0 on an open interval, then also
. P« (t) all derivatives of®;(¢) vanish onI and this may determine
A=\ <5 (1 +1n (q*(t)>) + F”*(t)> (8)  the control. Controls of this kind are calleihgular while

we refer to the constant controls bang controls. Optimal
+ Ao <2d qt t) b) 7 M(T) = o, controls then neeq to be synt_hes_ized from these candidates
3 p3(t) through an analysis of the switching function.
. Pa(t) 2 Calculations of the derivatives of the switching functions
Ay = —f)\lq Ol Ao (p+ dpi (t) + Gua(t)), (9 simplify significantly within the framework of geometric
: optimal control theory and we therefore now write the state

. . A2(T) =0, as a4-dimensional vector: = (p, q,y,z)” and express the

Az =0, and A\ =0 (10)  dynamics in the form
such that the optimal controls, (¢) and v, (t) minimize the i = f(x) + ugi(x) + vga(x) (16)
Hamiltonian H,

where
H=-)\ <5p1n (g) + va) + Agt + \gv (11) —&pln (5)
3 _| bp—(n+dp)q
+ A2 (bp — (u + de) q— Guq) f(z) ( 0 ) ’ 17

along (g, A(t), p«(t), g« (t), y«(t), 2« (t)) over the control set 0
[0,a] x [0, c] and the minimum value is given by 0 _F

We call a pair((p, ¢, v, 2), (u,v)) consisting of an admis- e 0 P
sible pair of controlgu,v) and its corresponding trajectory ¢i(x) = 1 71, and g2(x) = 0 . (18)
(p,q,y, z) for which there exist multiplierg§\, \) such that 0 1

the conditions of the Maximum Principle are satisfied an
extremal (pair) and the triple((p, q,y, 2), (u,v), (Ao, X)) is  Following differential geometric conventions we denote th
an extremal lift (to the cotangent bundle). Extremals witltanonical basis vectors bygip = (1,0,0,0)7, a% =
Ao = 0 are called abnormal while those with a positive(0, 1,0,0)7 etc. This allows to write these vector fields and
multiplier A\ are called normal. In this case we always takeheir brackets in a space saving form, e.g.,
Ao = 1. o 0 o 0
Lemma 3.1: For well-posed initial conditiongpy, go) ex- g(z)=-Gg=—+ —, go(x)=—-Fp—+ —. (19)
tremals are normal. 0q = Oy Op 0z
Proof. If \; = 0, then by the adjoint equation both and The derivatives of the switching function can easily be
A2 vanish identically. Since the multipliers; and )\, are computed using the following well-known result that can be
constant and the controls are non-negative, the conditian t verified by a direct calculation.
H = M3u+ M\ = 0 implies that at least one of the controls Proposition 3.1: Let h be a continuously differentiable
must be identically zero and thus the initial condition Is il vector field and definel(t) = (A(t),h(x(t))). Then the
posed.O] derivative of ¥ along a solution to the system equation (16)
The controls are determined through the minimum corfor control » and a solution\ to the corresponding adjoint
dition on the HamiltonianH. Since H is linear inw and equations (8)-(10) is given by
v and the control sets are compact intervals their values are

determined by the values of the so-calkedtching functions W(t) = (A@), [f +ugs + vga, h(2(?))) (20)
®, and ®, introduced above, where [f,h] denotes the Lie bracket of the vector fields
Oy (1) = As — Ao (£)Gau (8), (12) f and h. Recall that the Lie bracket is computed in local

coordinates asf,h](x) = Dh(z)f(x) — Df(xz)h(x) with
Dy(t) = Aa = M () Fpu(t), (13) ' D denoting the matrix of the partial derivatives pf (I



IV. ANALYSIS OF SINGULAR CONTROLS the degenerate casg = 0 is not possible since this would

In this notation the switching functions are given as  IMPly A2(¢) = 0 on I and then by the adjoint equation also
A1(t) = 0 on I which is not possible. Thus along an optimal

D1(t) = (A(t), 91 (x(2)),  P2(t) = (A(t), g2 (x(1))), u-singular control we have thah(t), [g1, [f, g1]](z(t))) < 0
and the singular control can be expressed as

Dy (t) = (A1), [f + vg2, g1] (2(1))) () = = </\(<t>)\7(g, Fgfizf Z]iq(lfy(g)(;)»'
Dy(t) = (A1), [f + ug1, g2] (2(1))) -

Another computation shows that

and hence

An elementary calculation verifies that and go commute, 9 F
[91,92] = 0, and thus this simplifies to g2, [f, 1]](z(2)) = FGbpa—q =gl [f, g1l (1)
i)l(t) =A@, /9l =) (21) and we can therefore write #)
Do(t) = (A1), [f, g2] (2(1))) - (22) ® A, U Il (@(8)) Ia
ux(t) = — 2 + —w.

As a consequence we have that

Lemma 4.1: The controlsu andv cannot both be singular
on an open interval simultaneously .

Proof. Direct computations verify that

A®), o, [f nll(2(8)) G
The first term in this expression is exactly the singular rmnt
for the monotherapy case computed in [17] and we can sim-
ply draw on these results to determine the singular controls

0 It follows from those calculations thaf, [f, g1]] lies in the
[f, 91)(z) = <§_p - baq> linear span of the vector field¥, g:] and g1, [f, g1]],
and o ; . 1fanl(e) = (€402 ) [anl) — vlon o]0

) = ——+ (b= Zdp3q) — 26

[, 2] () Fp< 58p+< 3P q) aq> it (26)

F 2 2 0
~gltholle) = gFdptag, U(p,q) = (§1n< >+b +3£5—3—(u+dp3))-
It follows that the four vector fields,, go, [f, ¢1], and[f, g2 b 27)

are linearly independent everywhere. But the multipies  Overall we therefore have shown the following result:
non-zero since\; and )\, satisfy a homogeneous linear ODE  Proposition 4.1: If the optimal controlu, is singular on
with non-zero terminal condition and thuscannot vanish an open interval andv. is constant, then
against all four vector fields at any timel F

It is not difficult to see that this implies that if one of ux(t) = ¥(p«(t), g« (t)) + reha (28)
the controls is singular on an intervdl then the other
control has isolated switchings oh. Because of space U . .
restrictions here we only consider the more relevant caseNOte that the necessary conditigh= 0 of the Maximum
of u-singular controls and assume that &, (t) = 0 on an " 'inciple implies in addition that
open interval I = («, ) and that v is constant. Hence (A(t), [ (2(t)) +vga((t))) =0 (29)

dy(t) = (A1), [f, 1] (z(t))) = 0 and - . .
. and thus the multiplien\(t) must vanish against the three
1(t) = (A®), [f +ugr +vg2, [f, 1]l (2(1))) =0. (23)  vector fields f + vgs, g1 and [f, ¢1]. This now leads to

Except for the extra fourth coordinate whichghe vector dualitatively very different structures depending on vhieet

fields f and g1 are the same ones as for the case of =0 0rv=c>0.

monotherapy considered in [17] and a direct calculation Case L:If v =0 on I, then naturally the problem reduces
verifies that to the monotherapy situation analyzed in [17]. In this case

the vector fieldsf, g; and[f, ¢1] all have zero last coordinate

l91, [f, g1]](z(t)) = —G2bp2, (24) and span thép, ¢, y)-subspace. The only vectors orthogonal
9q to all of these ard0,0,0, \4). But along a singular arc the
so that component\, must be positive and thus it follows that the
B 9 vector fields f, g and [f, g:] must be linearly dependent
(A®), [g1, [f 91l (2(1))) = —A2() G7bp. along the singular arc. Hence, although formulate®4nthis

Along an optimalu-singular control the multipliers., and case reduces to the three-dimensional problem considered i
A3 must be positive: For); is constant and the fact that the[17]. Under the natural condition that

switching function®, () = A5 — A2(t)Gq(t) vanishes o/
implies that\, and A3 have the same sign ah But if A5 <
0, then the Legendre-Clebsch condition for minimality of thehat is, in principle the maximum dosage of outside inhitsito
singular control (withv constant) is violated (e.g., [3]) and is able to overcome the net effect of stimulation through

Ga>b—pu>0,



the tumor minus natural death terms (the coefficigns

generally much larger thep and the second inequality is

not a realistic restriction) we thus have the following tesu =
Proposition 4.2: [17] If an optimal controlu, is singular Z

on an interval (o,3) and v = 0 on («, (), then the

corresponding trajectorgp., g.) lies on a uniquely singular

curveS. Defining new variablegp, ) with r = § this curve

S can be parameterized in the form

sin

3
P+ <9r(1nr 1)+ ﬁ) =0 (30)
d d

with  in some interval[ri,r2] C (0,00). The singular
control keeps the system on the singular curve and is given Fig. 1. The singular contraks;n (r) while v = 0
as a feedback function of in the form

wnlr) = g [ (ge o) mra Se (-] @0
There exists exactly one connected arc on the singular curve o er
S along which the singular control is admissible, i.e., $ités § s
the boundsd) < wug,(r) < a. This arc is defined over an = eooof .
interval [r;, 7] wherer; andr}, are the unique solutions to 5wl
the equationsii, (r;) = 0 andugn (r};) = a. At these points
the singular control saturates at the control limits- 0 and
u=a.[] %’I 5z spmmssnemees 5

Figs. 1 and 2 illustrate the proposition for the follow- carrying capacity of the vasculature, q
ing parameter values taken from [13] that were obtained
by fitting experimental data for the case of Lewis lung Fig. 2. The admissible singular cungfor v = 0

carcinomas implanted in mice: The variablesand ¢ are

volumes measured imm?; ¢ = %192 = 0.084 per day _ .
(adjusted to the natural logarithm}, = 5.85 per day, Pieces. For the monotherapy analyzed in [17] the singular
d = 0.00873 per mm? per day, G = 0.15 kg per mg &rc was the center piece anchoring this synthesis. A typical
of dose per day with concentration inmg of dose per kg, optima}l cont.rol followed the controk = a (f(_)r initial_
and for illustrative purposes we chose a small positiveezallconditions with a lowgo-value alsou = 0 is possible) until

for u, p = 0.02 per day. Since we identify dosage and it reached the singular arc and then followed the singular
concentration, both and A are in units of concentration and arc until all inhibitors had been exhausted. Here, with the
just for illustrative purposes we picked= 75 and A = 300. complexity of the2-control system the structure becomes
Fig. 1 shows the plot for the singular control defined bynore complicated and the full synthesis is still under in-
(31) also indicating the values andr where the control Vestigation. Below we include two graphs that compare two
saturates atig, (r) = 0 and ugy, () = a. Fig. 2 shows the typeg .of candidates for _optmal controls for dlffe_rent Iﬂﬂlt.
graph of the singular curve given by formula (30). Saturatioconditions. The blue trajectories correspond to simplygsi
restricts the admissible part to the curve that is markel wit Poth controls from the beginning at full doses until they run
solid line in Fig. 2. The qualitative structures shown instae OUt (for the monotherapy this is a rather good sub-optimal
figures are generally valid for arbitrary parameter valusth b Strategy); the red trajectory corresponds to giving fulselo
for the control and the singular curve. With decreasingeslu Of the controlv, the cytotoxic agent, until the drugs are

for the upper control limitz the admissible portion shrinks, €xhausted while the angiogenic inhibitors, the controht
but it is always preserved. the beginning follows the singular regimen computed above

Case 2:If v = ¢ > 0 on I, there exists an up to multiples @nd then when the cytotoxic agents are exhausted follows

unique multiplier X that is orthogonal to the vector fields the optimal control for the monotherapy problem. In both
f =+ cga, g1 and[f, g1]. Thus now there are no restraints onCases the tumor volume is &2,000 mm? initially and the
the locus of where the singular control is admissible and tHndothelial support initially is a6, 000 mm?® in Fig. 4 and
singular control is a feedback ifp, ¢)-space. Fig. 3 below at12,000 mm?® in Fig. 5. It is seen from the graphs that the

shows the admissible portion of this feedback control fer thfull dose strategy does better for the higlgrvalue while
parameter values given earlier. the singular regimen is the better strategy for the smaller

endothelial support.

V. COMPARISON OFSINGULAR PROTOCOLS WITH
REALIZABLE BANG-BANG STRATEGIES VI. CONCLUSION

It then becomes necessary to synthesize optimal controlsWe presented some preliminary results about optimal con-
from all possible candidates including partially singulatrols for a mathematical model that combines anti-angiagen
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therapy with a chemotherapeutic killing agent. Mathemati-
cally this becomes a multi-control problem and the strLe:tur[14]
of a synthesis of optimal controls is significantly more
complex than in the monotherapy case. Singular controlgs]
especiallyu-singular controls for the angiogenic inhibitors,
will again be part of this synthesis, but its full structunethe
sense of aegular synthesis [19] still needs to be worked out.
From this point of view, also the mathematically simplett bull7!
biologically intriguing problem of chemotherapeutic atgen
that have an anti-angiogenic effect is of interest. In tlaisec [18]
the mathematical problem again is single-input witl) an
increasing function ob(t).

[16]

[19]
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